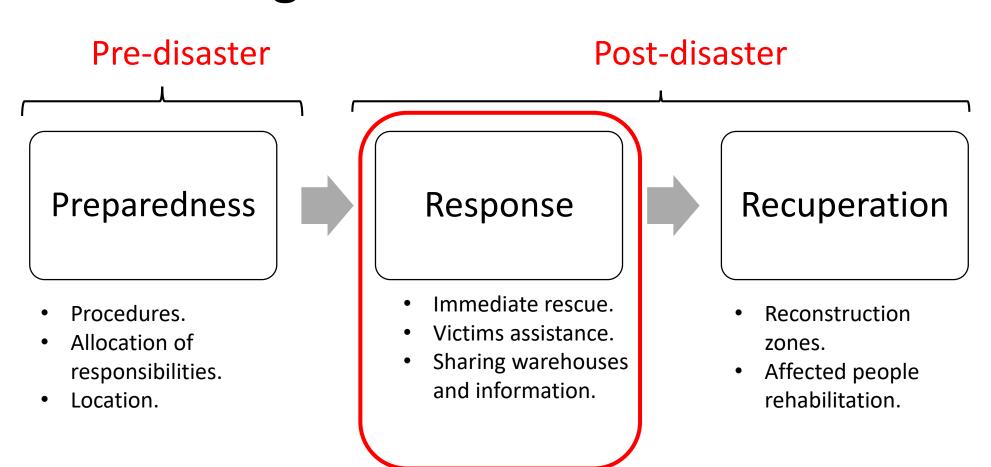


Medical Assistance Services in Emergency Situation Including Coordination Constraints

Lorena S. Reyes-Rubiano, Javier Faulin, Carlos Quintero-Araujo

Public University of Navarra
Department of Statistics and OR

November 28, 2016



Overview

- Introduction
- Horizontal collaboration importance contribution for humanitarian Logistics
- Problem description
- Model
- Conclusion

1. Introduction

Humanitarian Logistics

Horizontal Collaboration

Horizontal Collaboration: refers to relationships among actors that belong to the same level in the supply chain, who are capable to supplant or complement their operations, in order to achieve a common goal.

- Maximizing deliveries in the most critical periods.
- Generating significant savings.
- Reducing assistance efforts.
- Good performance in coverage and connectedness.

Horizontal Collaboration Barriers

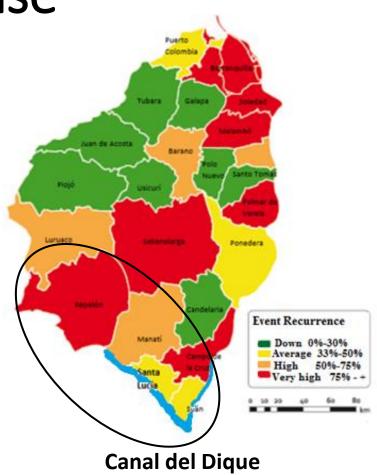
Some similarities with commercial logistics:

- Different missions, response capability and logistic experience.
- Barriers related to communication and alignment.
- Coordination required among stakeholders, resources, leadership, decision-making.

Other barriers:

- Culture.
- Language.
- Organizations legitimacy.

Problem Description


- High instability in the affected area.
- Lack of collaboration among humanitarian aid organizations.
- Spread of the health problems.
- Loss of human lives.

Process Response

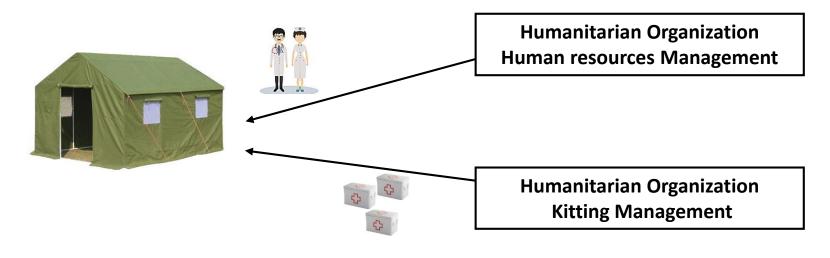
3. Problem Description

Study Case

3. Description Problem

Study Case

Affected Regions	Total Area (hectares)	Affected Area (hectares)	Affected Families	State
Campo de la crúz	1200	1200	106	Total flooding
Manatí	22000	22000	1861	Total flooding
Repelón	3400	2200	393	Partial flooding
Santa Lucía	1350	1350	302	Total flooding
Total	27950	26750	2662	


Calamities	Health problem	Incidence rate
	Sleep disorder	27.1%
Psychological disorder	Anxiety	21.3%
	Post-traumatic stress	39.5%
Fractures		11.7%
Crushing of limbs		11.7%
Minor injuries (blows, scratches, small cut)	Bumps, scrapes, minor cuts	90%
	Vomit	4.3%
Acute diarrheal diseases	Diarrhea	4.3%
	Cholera	2.0%
	Cough	7.6%
Posniratory infactions	Rhinorrhea	9.9%
Respiratory infections	Exanthema	3.5%
	Sore throat	3.5%
Vector-borne diseases	Malaria, dengue, others	30.0%

	Information		Total
es	Doctors	5	
Brigades	Nurses	5	19
Br	Humanitarian aid kits	9	
	Sabanalarga	10	
Shelters	Ponedera	18	39
She	Repelón	8	39
	Candelaria	3	
De	pot	1	

General Considerations

- Coordination among caregivers.
- Health cares victims' necessity.
- Single depot.
- 40 nodes and 19 brigades

4. Model

Formulation

Sets

```
i Set of nodes (shelters and depot).
```

j Copy of the set i.

l Set of mobile units.

m Set of calamities.

Parameters

 $TV_{i,j}$ Travel time between i and j.

 $D_{j,m}$ Number of families suffering from calamity type m in the shelter j.

 $TA_{l,m}$ Attention time for the mobile unit l to meet the calamity type m.

Alivio_{l,m} Relief percentage of mobile unit l when it meets the calamity m.

Variables

 $Y_{i,l}$ = Service starting time provided by the unit l at shelter i

Objective Function:

$$MAX Z = \sum_{\forall i} \sum_{\forall j} \sum_{\forall l} \sum_{\forall m} X_i^{j,l} A_{l,m} D_{j,m}$$
(1)

Constraints:

$\sum_{\forall j \in J} X_0^{j,l} \le 1,$	$\forall l \in L$		
$\sum_{\forall i \in J} X_i^{0,l} \le 1,$	$\forall l \in L, j$	Start/end of the route	
$\sum_{\forall j} X_i^{\ j,l} = \sum_{\forall j} X_j^{\ i,l}$	$\forall i \setminus \{0\}; \forall l$	Routes continuity	
$\sum_{\forall j \in J} X_i^{j,l} \le 1,$	$\forall l \in L, i \in I$	One origin and destination	
$\sum_{\forall i \in J} X_i^{j,l} \le 1,$	$\forall l \in L, j \in I$	One origin and destination	
$\sum_{\forall i \in J} X_i^{j,l} \le 1,$	$\forall l \in P, j \in I$	Avoiding multiple deliveries	

Constraints:

$$\sum_{\forall j \in I} \sum_{\forall l \in D} X_i^{j,l} + \sum_{\forall j \in I} \sum_{\forall l \in N} X_i^{j,l} = \sum_{\forall j \in I} \sum_{\forall l \in K} X_i^{j,l}$$

$$\forall i \in I \setminus \{0\}$$

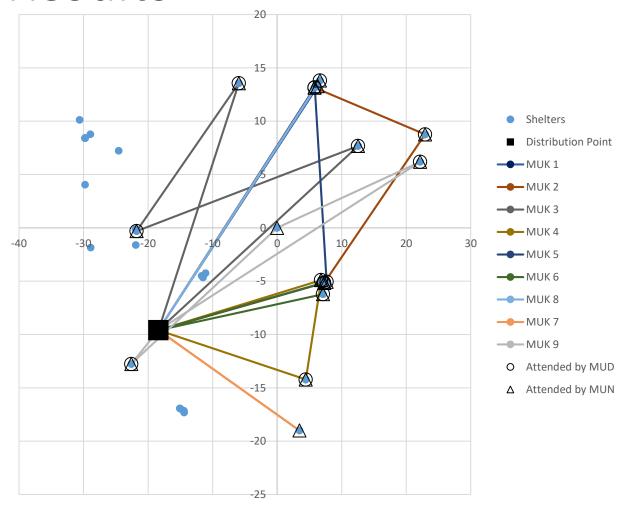
 $\forall i \in I \setminus \{0\}$ Brigades Coordination

$$Y_{i,l} - Y_{i,f} \le GAP$$
 $\forall i \in I \setminus \{0\}; \forall l \in D \cup N; \forall f \in K; \forall j \in I \setminus \{0\}\}$

Time Coordination

$$Y_{i,l} - Y_{i,f} \ge -GAP$$
 $\forall i \in I \setminus \{0\}; \forall l \in D \cup N; \forall f \in K; \forall j$

$$Y_{i,l} + TV_{i,j} + \sum_{\forall m} TA_{l,m} \le Y_{j,l} + F(1 - X_j^{i,l})$$
 $\forall i \in I \setminus \{0\}, \forall l, \forall j$ Sequence


$$X_i^{j,l} \in \{0,1\}, \quad \forall j \in J, i \in I, l \in L$$

$$Y_{i,l} \geq 0$$
, $\forall i; \forall l$

Characterization

4. Model

Results

Indicators (Period less than 72 hours)			
Operation Time (hours)	72		
Coverage	51%		
Attended shelters	20		
Relief percentage	99%		

Indicators (Without any time limit)		
Operation Time (days)	7	
Coverage	100%	
Attended shelters	40	
Relief percentage	100%	

Results

Indicators	Collaboration + Maximizing relief	Minimizing Distance
Operation Time	7 days	12 days
Coverage	100%	100%
Relief percentage	100%	60%
Shelters	40	40

Conclusions

- The structured tools can be reduced the response time up to 80%, because in average the disaster management can take from 1 day to 2 months.
- There are many studies in humanitarian logistics based on traditional economic interests neglecting the humanitarian factors.
- Traditional objectives of commercial logistics do not respond to humanitarian needs.
- Maximizing relief in a period less than 72 h generates significant savings in terms of loss of human lives.

Horizontal Collaboration

- Horizontal collaboration improves the connectedness and coverage when organizations work in cooperation.
- Horizontal collaboration is a strategy that contributes not only to affected people safety, but also the volunteers and employees safety who assist the affected zone.
- Horizontal collaboration generates knowledge transfer among organizations, which improves operation response.
- The culture problems can be solved by cooperation among local and international humanitarian organization.
- Horizontal collaboration avoids duplicating efforts by multiple deliveries to a small portion of affected people.

Future Research

- To consider disasters related to:
 - Toxic or radioactive materials.
 - Man-made disasters and conflict situations.
- To analyze city logistics emergency situations considering different risk factors.
- To develop an efficient solution method, generating a coordinated work to reduce the people suffering and the efforts of humanitarian aid organizations.

Thanks