Maximum-expectation matching under recourse

João Pedro Pedroso
Based on "Maximum-expectation matching under recourse", joint work with Shiro Ikeda

Madrid 28-29 November 2016
CYTED Workshop

Kidney exchange programs

- Motivation
- Models
- Reconfigurations

Information systems for health care

- Expected to be one of the areas where more resources will be applied in the next few years
- Has issues involving the many disciplines, including operations research, computer science, informatics, ...
- Information systems have a huge impact in terms of
- economy
- social benefits
- work rationalization
- reliability

Kidney Failure Treatments

- Kidney failure
- One kidney \longrightarrow OK
- Both kidneys \longrightarrow Dialysis or Transplantation
- Dialysis vs Transplantation
- Transplantation yields longer survivability
- Transplantation yields a better quality of life
- Dialysis is more expensive than transplantation; values for Portugal:
- Hemodialysis \longrightarrow 30K euro per year per person
- Transplantation: 30K euro once +10 K euro year

Kidney Failure Treatments

I don't care what day it is.
Four hours is four hours.

- Objective: \longrightarrow carry out the maximum possible number of (successful) transplants

Sources of kidneys for transplantation

- Deceased donors
- very large waiting lists (5 years or more waiting)
- Living donors:
- relatives, spouse, friends, altruistic donors
- many ethical and legal issues (varies with country)
- e.g. no commercial transaction of kidneys is generally accepted

Sources of incompatibility

- Blood type compatibilities

Donor	Recipient			
	O	A	B	AB
O	\checkmark	\checkmark	\checkmark	\checkmark
A	\boldsymbol{X}	\checkmark	\boldsymbol{X}	\checkmark
B	\boldsymbol{X}	\boldsymbol{X}	\checkmark	\checkmark
AB	\boldsymbol{X}	\boldsymbol{X}	\boldsymbol{X}	\checkmark

- Tissue type incompatibility
- HLA (Human Leukocyte Antigens)
- ...

Background: kidney exchange programs

- in many countries, recent legislation allows patients needing a kidney transplant to receive it from a living donor
- what to do when the transplant from that donor is not possible?
- blood type
- other incompatibilities
- patient-donor pair may enter a kidney exchange program (KEP)

Kidney exchange programs

- KEPs were first proposed by (Rapaport, 1986)
- First transplants within a KEP were done in South Korea, 1991
- Many countries have now KEPs (USA, Switzerland, Turkey, Romania, Netherlands, UK, Canada, Australia, New Zealand, Spain)
- A KEP started in Portugal in 2011; presently, transplants are routinely performed

Kidney exchanges

- Suppose there are two patient-donor pairs $\left(D_{1}, P_{1}\right)$ and $\left(D_{2}, P 2\right)$
- Donor D_{1} is willing to give kidney to patient P_{1} but they are incompatible
- The same for pair D_{2}, P_{2}
- D_{1} is compatible with P_{2} and D_{2} is compatible with P_{1}
- Then, D_{1} can give a kidney to P_{2} and D_{2} can give a kidney to P_{1}

Kidney 2-exchanges

- allow two patients in incompatible pairs to exchange their donors
- each patient receives a compatible kidney from the donor of the other pair

Incompatible pairs $P_{1}-D_{1}$ and $P_{2}-D_{2}$ exchange donors

- P_{1} receives a transplant from D_{2} and vice versa

Graph representation:

- vertices are patient-donor pairs
- arcs link a donor to compatible patients

Kidney 3-exchanges

- The idea can be easily extended to 3 or more pairs:

- Representation with a directed exchange graph:
- each incompatible pair (D_{i}, P_{i}) corresponds to a node i
- there exists an arc between i and j if donor D_{i} can give a kidney to patient P_{j}
- a cycle with k nodes in this graph corresponds to a k-exchange

Kidney exchanges: example

- instance with five pairs
- what is the maximum number of transplants?
- what if the allowed number of simultaneous transplants is limited?

Kidney exchanges: example

- feasible exchange: a set of vertex-disjoint cycles (e.g., $1-2-3-1$)
- size of an exchange: sum of the lengths of its cycles
- maximum exchange in this example: 4
(cycle 1-2-5-3-1)

Kidney exchanges: maximum cycle size

- In many situations the length of each cycle is limited
- If maximum cycle size is $K=3$, several solutions are possible.

Kidney exchanges: why limiting size

- Two main reasons:
- usually, all transplants in a cycle should be done at same time
- someone could withdraw from the program
- last-minute incompatibility test (crossmatch, just before transplantation)
- if positive, no transplantation can be done for any pair in this cycle
- (rearrangements may change the previous limitation)
- However, optimum number of transplants increases with maximum size allowed
- Most programs have $k=2$ or $k=3$

Kidney Exchange Model

- Given:
- a pool of n incompatible donor-patient pairs
- the compatibility between all donors and all patients
- find the maximum number of kidney exchanges with cycles of size at most ${ }^{\sim} k$

Complexity

- Is this problem easy to solve?
- YES, if $k=2$ or no limit is imposed on the size of the cycles
- NO, if $k=3,4,5, \ldots$
- If $k=2$ the problem reduces to finding a maximum matching in a undirected graph, which can be solved efficiently (Edmonds 1965)
- If no limit is imposed on the size of the cycles the problem can be formulated as an assignment problem (can be solved efficiently by hungarian algorithm)
- The problem is NP-hard for $k=3,4,5, \ldots$ (hence, no polynomial algorithms are known to solve it)

Mathematical programming formulations

- There are several possibilities for modeling the problem in mathematical programming
- One of the most successful is the cycle formulation:
- enumerate all cycles in the graph with length at most K
- for each cycle c, let variable x_{c} be 1 if c is chosen, 0 otherwise
- every feasible solution corresponds to a set of vertex-disjoint cycles

Cycle formulation

$$
\begin{array}{ll}
\text { maximize } & \sum_{c} w_{c} x_{c} \\
\text { subject to } & \sum_{c: i \in c} x_{c} \leq 1 \quad \forall i \tag{2}\\
& x_{c} \in\{0,1\} \quad \forall c
\end{array}
$$

- case of $0-1$ weights: $w_{c}=|c|$, (length of cycle~ c)
- objective: maximize the weight of the exchange
- constraints: every vertex is at most in one cycle (i.e., donate/receive at most one kidney)
- difficulty: number of variables

Reconfigurations

Maximizing expectation

- How to optimize if there is some probability of vertex/arc failure?
- vertex failure: due to some patient/donor become ill, or otherwise unavailable
- arc failure:
- a last-minute incompatibility test (crossmatch) is performed just before the transplantation
- if any is positive, no transplantation involving this arc is possible

Maximizing expectation: model

- Basis: cycle formulation
- Standard approach: cycle's value is its number of arcs (i.e., the number of transplants)
- Our proposal: use the expectation of the number of transplants instead
- Problem: not straightforward to tackle...

1. computation of the expectation is heavy, even for small cycles
2. optimization is just a small part in the solution process...

Maximizing expectation: weighting cycles

- No recourse: give a weight to each cycle based on its reliability, but no rearrangements of the matching are allowed
- Internal recourse: rearrangements are possible, as long as they involve only vertices of a cycle

- Subset recourse: rearrangements are possible, as long as they involve only a cycle extended with small subset of vertices

Internal recourse: Unreliable vertices

Solution procedure: implementation

- Implementation
- contact selected pairs
- verify solution (check back outs)
- make last-minute compatibility check
- make transplants

More on reconfigurations

More on reconfigurations:

- In the previous cases, we allowed for ONE reconfiguration
- What if we allow more than one?
- there is no natural limit on this number
- e.g., if two cycles fail, why not reassign the remaining pairs?

Reconfigurations:

- Caveat:
- we will not be treating the general case
- Simplification:
- considering only cycles of length 2
- graph: undirected, edge when two patients can exchange donors

The story

- case: limit to $k=2 \rightarrow$ polynomial
- first approach:
- enumerate all maximal-matchings
- choose the one with best expectation
- but... maximum-expectation matching may be non-maximal

Some properties:

1. maximum-expectation matching may be non-maximal
2. with no limit on the number of observations, there is maximum-expectation matching with one edge per observation
3. as a consequence: maximum-expectation matching is not in EXPSPACE...

- ... any hope?

Algorithm

$z^{\prime} \leftarrow \operatorname{Solve}\left(V, R^{\prime}, p, N-1\right)$
$z \leftarrow z+q \times\left(2 n+z^{\prime}\right)$

Behavior

Limited recourse

- often there is a limit in the allowed number of observations/reconfigurations
- N-recourse: matching such that solution must be reached within N observations
- $N=0 \rightarrow$ standard matching
- $N=\infty \rightarrow$ unlimited case
- difficulty:
- solvable in polynomial time for $N=0$
- complexity increases with N
- ∞-recourse intractable

Practical approach:

- Initial solution for $N=0$
- Increment N until
- additional gain acceptably low, or
- computational time excessive

Solution

- Under limited recourse \rightarrow no longer a binary tree
- On each node/observation one may optimally propose multiple edges
- Children of the node:
- must include all the patterns of success or failure edges proposed
- Example: at a given observation:
- matching: pairs $\{A, B\}$ and $\{F, G\}$
- if $\{A, B\}$ and $\{F, G\}$ succeed:
- matching: $\{\mathrm{H}, \mathrm{I}\} \ldots$
- if $\{A, B\}$ succeeds and $\{F, G\}$ fails:
- matching: $\{\mathrm{H}, \mathrm{J}\}$
- if $\{A, B\}$ succeeds and $\{F, G\}$ fails:

Conclusions/Further work

- Very difficult problem
- can we solve realistic cases?
- how will practitioners react to the solution?
- each solution may have an exponential number of steps
- \rightarrow example
- How to deal with multiple agents
- e.g., each agent may be an EU country
- To do: extend to cycles of size $k>2$

