

Joaquín Pacheco Universidad de Burgos

Irma García Universidad Autónoma de Coahuila

Madrid, November 28 2016

Introduction

- A Bi-objective model
- Description of objectives function
- References about (Dial A Ride Problem) DARP
- Solutions Approach

- Transportation of a set of handicapped people (clients), from the corresponding homes to the destinations (cultural centers, hospitals, etc.)
- Design of routes following the DARP. This model incorporates the "human perspective" (Cordeau, 2003)

Cordeau 2003: Tabu

Cordeau 2006: Formulation

Cordeau and Laporte (2007): revision of models and approaches

Mauri and Lorena (2006): A multi-objective model

Paquette el at. (2012), (2013): Real problem in Canada, involves quaility of service, and use of Tabu

Chevrier et. al. (2012): A three objectives model

Guerriero et al (2014): 2 objectives, total time and waiting time

Muelas et al (2015): Large size problems with VNS

Ritzinger et al (2016): Large Neighborhood Search

Chassaing et al (2016): Evolutive Local Search

Molenbruch et al (2017):Total time and total distance

Minimization Transport
Costs

 Maximize the level service (minimizing "over" time) Set of clients $W = \{w_1, w_2, w_3, ..., w_n\}$

Initial points $P = \{ 1, 2, 3, ...n \}$

Destinations $D = \{ n+1, n+2, ..., 2 \cdot n \}$

$$V = P \cup D \cup \{0\}$$

Lmax: Maximum travel time by vehicle

m: number of vehicles

Q: Capacity, C: Vehicle Cost

t_{ij}, d_{ij}: time and distances matrices

Economic objective

Used Vehicles·C + Total distance

Social objective

min max { $|T_i - t_{i,n+i}| : i \in \{1,2,..n\}$ }

 T_i : Time of travel of client w_i in a solution S

Social solution: $T_A = t_{A+A-}$ and $T_B = t_{B+B-}$

- S: Feasible solution
- $f_1(S) = \text{Cost in } S$
- $f_2(S)$ = Social function in S
- $f_1^{\min} y f_1^{\max}$: Min and max values for f_1 in Set of No-dominated solutions
- $f_2^{\min} y f_2^{\max}$: the same for f_2

$$F_{\lambda}(S) = \max \left\{ \lambda \cdot \frac{f_1(S) - f_1^{\min}}{f_1^{\max} - f_1^{\min}}, (1 - \lambda) \cdot \frac{f_2(S) - f_2^{\min}}{f_2^{\max} - f_2^{\min}} \right\}$$

Calculate
$$d_{0i}^+ + d_{i+i}^- + d_{i-0}^-$$

In every iteration take the next client i

Built the set L of all feasiables insertions of i

Calculate $\Delta d(ins)$ and $\Delta f(ins) : ins \in L$

$$val(ins) = \beta \left(\frac{\Delta d(ins) - min\Delta d}{max\Delta d - min\Delta d} \right) + (1 - \beta) \left(\frac{\Delta f(ins) - min\Delta f}{max\Delta f - min\Delta f} \right)$$

Built *ListCandidate* with the *ins* corresponding with the minimun *val(ins)* values

TABU SEARCH: MOVES

Check the feasibility:

Total time Capacity

Preferences: A+ before A-

Auxiliar Variables that are updated afer each move

TimeAc(i): Acumulated distance after visiting i

Qac(i): Acumulated passangers after visiting i

List of chains that can be moved in Inter-routes

List of moves that can be performed (Intra Routes)

max_desp("chain"):

maximum numer os positions that chain can be moved ahead (forward)

