

Introducing Survival Analysis Techniques for Solving Parallel Stochastic PFSPs

Laura Calvet

Dr. Sara Hatami

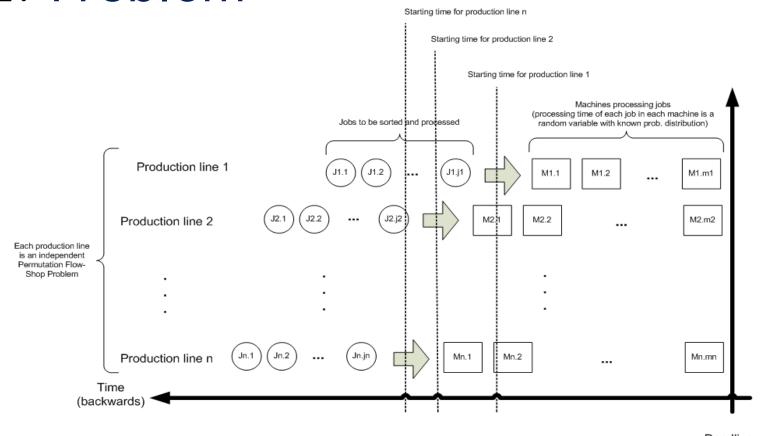
Dr. Angel A. Juan

Dr. Carles Serrat

Outline

- 1. Introduction
- 2. Problem
- 3. Methodology
- 4. 1st Phase
- 5. Conclusions

1. Introduction

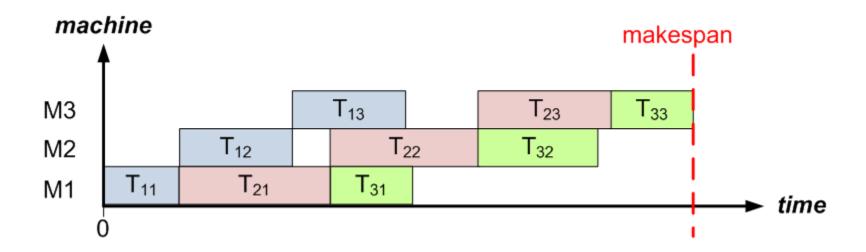

The complexity of manufacturing is becoming increasingly higher.

Frequently, we find supply chains where different <u>companies cooperate</u> to manufacture a product.

In a globalized economy, companies identify their core competences and <u>outsource/purchase</u> those activities in which they do not excel.

As a result, these products can be decomposed into a set of independent components/tasks with a common due date.

2. Problem



Deadline

We assume that each of these components/tasks has to be processed in a factory, which can be modeled as a permutation flow-shop problem with random or stochastic processing times (PFSPST).

2. Problem

PFSP

In each factory or production line k of a set F, a set J_k of n jobs has to be processed by a set M of m machines, being T_{ijk} the random variable representing the time it takes for job i of factory k to be processed by machine j.

The goal is to find a sequence (permutation) of jobs that optimizes a given criterion.

2. Problem

Minimize $\sum_{production\ line}$ time between starting times and deadline

subject to P(finishing before deadline) $\geq p$

The product is required to be finished by the deadline with a user-specified probability, p.

The decision-maker must decide about the starting times, and the permutation for each production line.

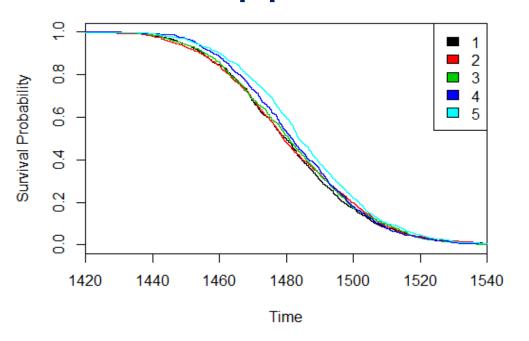
3. Methodology

Our approach:

Metaheuristic + Simulation + Survival Analysis

Benefits:

- i. it can solve large-scale instances in reasonable computing times;
- *ii.* it does not make any assumption either on the probability distributions employed to model the random processing times.


3. Methodology

Our methodology is based on a <u>simheuristic approach</u> (Juan et al. 2015), which relies on a metaheuristic and Monte Carlo simulation (MCS) techniques.

MCS techniques enable the assessment of solutions in a dynamic environment:

- (1) simulate a number of scenarios;
- (2) apply a specific solution in each scenario and compute a measure of performance; and
- (3) return that measure.

4. 1st Approach

We tested it on an artificial instance with 5 machines and 24 jobs, assessing 1000 solutions, which takes around 23 seconds.

Top 5 solutions for a probability of 90%.

Solution	50%	85%	90%	95%
1	1479.71	1501.72	1506.79	1516.80
2	1479.07	1503.75	1508.41	1516.20
3	1480.74	1502.54	1509.24	1516.74
4	1481.61	1502.89	1507.58	1514.84
5	1483.63	1504.85	1510.10	1519.66

5. Conclusions

- We have discussed how <u>simulation can be combined with metaheuristics</u> in order to deal with stochastic multi-factory scheduling problems, and how introducing <u>survival analysis techniques</u> may improve the results.
- We have focused on a scheduling problem composed of <u>parallel and</u> <u>independent components/subtasks</u> with a common due date, the processing of each of these components being modeled as a permutation flow-shop problem with stochastic processing times.
- How to set starting times of each component in such a way that the total machine-occupancy time is minimized while ensuring a user-given probability of finishing all components in due time?
- Open research lines: e.g., correlations between processing times, assignation of products to production lines, ...

28-29 Nov 2016 CYTED Madrid Workshop

Thank you for your attention

Introducing Survival Analysis Techniques for Solving Parallel Stochastic PFSPs

Laura Calvet Dr. Sara Hatami Dr. Angel A. Juan

Dr. Carles Serrat