CYTED Madrid Workshop

28-29 November 2016

Measuring robustness in SCM by links shutdown

B. Adenso-Diaza, J. Marb, S. Lozanoc

^a Escuela Superior de Ingenieros, University of Oviedo, Spain
 ^b Faculty of Engineering, Universidad Autónoma de Tamaulipas, Mexico
 ^c Escuela Superior de Ingenieros, University of Seville, Spain

CONTENTS

- 1. Introduction
- 2. Approach to measure robustness
- 3. Modelling the network collapse
- 4. Experimental framework and results
- 5. Summary and conclusions

1. Introduction

- 2. Approach to measure robustness
- 3. Modelling the network collapse
- 4. Experimental framework and results
- 5. Summary and conclusions

- □ Globalization has brought more movement of good → design of logistics networks is more important
- Logistics networks design: decisions about nodes (plants, warehouses...), links, transportation modes, locations, flows...
- □ Poorly designed networks led to inefficient operations (redundancies,...)

Volcano Eyjafjalla Iceland, April 2010)

Eastern USA, "Superstorm of 1993"

Sandy tropical storm (NY, 2012)

Tsunami Japan, March 2011

but also....

Terrorist attack, NY, Sept. 2001

RESILIENCE

- SC RESILIENCE is defined as the ability of a SC to reduce:
 - ✓ probability of disruption
 - ✓ consequences of the disruptions
 - ✓ time to recovery after a disruption
- ☐ Craighead et al (2007) identified 3 main factors affecting resilience:
 - Nodes and links complexity
 - Density (geographical)
 - Node criticality
- Mohapatra et al (2015) claim excess capacity increases resilience

GOALS:

- Define a bi-objective model minimizing not-served demand and costs, in order to...
- use the model to define a measure of robustness when links collapse.
- Analyse how some factors can influence that robustness

PLANNING:

We need to define:

- The model to decide the best network to manage demands
- The measure of robustness in this context
- The factors that could have influence in the measure
- How to generate the corresponding instances
- How to analyse the results

1. Introduction

2. Approach to measure robustness

- 3. Modelling the network collapse
- 4. Experimental framework and results
- 5. Summary and conclusions

- ☐ A network with 4 echelons (demand in the last one)
- No fixed costs; max capacity in links (not nodes)
- ☐ An LP **model** minimize cost (demand must be satisfied)
- ☐ Links in the Base Network will be shutdown to study the effects

- Shutdown one-by-one links in the BN
- An LP model solves lexicographically {max service level; min cost} using any link except the forbidden ones (demand fulfillment is a <u>soft constraint</u>)
- Attached to each collapsed link: [% demand served; average cost per unit]

- ☐ We could sort the links according to their criticality regarding service level
- ...but we could also shutdown groups of links successively (regional strike, bankrupcy of a carrier...) and study degradation (monotonically decreasing) in service level solving each time the lexicographic model

- ☐ We could sort the links according to their criticality regarding service level
- ...but we could also shutdown groups of links successively (regional strike, bankrupcy of a carrier...) and study degradation (monotonically decreasing) in service level solving each time the lexicographic model

- ☐ In which order to shutdown links?
 - Randomly.- Natural disasters, accidents...
 - Targeted.- Someone selects what to shutdown: we sort them according to higher flows in the BN solution

- □ Considering the area under the ladder divided by the No. of links, we could define a measure of the the robustness against succesive links collapse
 - ✓ R^{target}(N) (deterministic)
 - √ R^{rand}(N) (average of a number of replications)

- 1. Introduction
- 2. Approach to measure robustness

3. Modelling the network collapse

- 4. Experimental framework and results
- 5. Summary and conclusions

BN MODEL

$$\text{Min} \quad \sum_{s} \sum_{p} c_{sp} \cdot x_{sp} + \sum_{p} \sum_{w} c_{pw} \cdot x_{pw} + \sum_{w} \sum_{r} c_{wr} \cdot x_{wr}$$

transport cost

$$\sum x_{wr} = D_r \qquad \forall r \qquad \text{fulfil demand}$$

$$\sum_{s} x_{sp} = \sum_{w} x_{pw} \qquad \forall p$$
 what enters, leaves

$$\sum_{p} x_{pw} = \sum_{r} x_{wr} \qquad \forall w$$

(not negativity)

capacity constraints

$$x_{sp} \le U_{sp} \qquad \forall s \, \forall p$$

$$x_{pw} \le U_{pw} \qquad \forall p \, \forall w$$

$$x_{wr} \le U_{wr} \qquad \forall w \, \forall r$$

LEXICOGRAPHIC MODEL

$$\begin{cases} \sum_{r} d_{r} \\ \sum_{s} \sum_{p} c_{sp} \cdot x_{sp} + \sum_{p} \sum_{w} c_{pw} \cdot x_{pw} + \sum_{w} \sum_{r} c_{wr} \cdot x_{wr} \end{cases}$$
 capac

demand not served

transport cost

$$\sum_{w} x_{wr} = D_r - d_r \quad \forall r \quad \text{fill demand}$$

$$\sum_{s} x_{sp} = \sum_{w} x_{pw} \qquad \forall p$$
 what enters, leaves

$$\sum x_{pw} = \sum x_{wr} \qquad \forall w$$

(not negativity)

$$x_{sp} = 0 \qquad \forall s \, \forall p \in P^{-}(s)$$

$$x_{pw} = 0$$
 $\forall p \, \forall w \in W^{-}(p)$

capacity constraints

 $x_{sp} \le U_{sp} \qquad \forall s \, \forall p$

 $x_{pw} \le U_{pw} \qquad \forall p \, \forall w$

 $x_{wr} \le U_{wr} \qquad \forall w \ \forall r$

$$x_{wr} = 0$$
 $\forall w \, \forall r \in R^{-}(p)$

collapsed links

4.EXPERIMENTAL FRAMEWORK AND RESULTS

- 1. Introduction
- 2. Approach to measure robustness
- 3. Modelling the network collapse
- 4. Experimental framework and results
- 5. Summary and conclusions

F1. NODES COMPLEXITY

F2. LINKS COMPLEXITY

F3. NETWORK CAPACITY

FACTORS (2-levels, L/H)

- F1: No. of nodes in the network (10/3/10/50 nodes; 20/6/20/100 nodes)
- F2: No. of links (70% links of complete graph; all links of complete graph)
- F3: Over-capacity of nodes and links (1.1*average demand; 1.3*a.d.)

Replications: $50 \Rightarrow 2^3 \times 50 = 400$ instances

F1. NODES COMPLEXITY
F2. LINKS COMPLEXITY
F3. NETWORK CAPACITY

SOME PRELIMINARY RESULTS

- Regarding the Base Network calculation, F1 and F2 are both significant on No. of Links and Total Cost (more complexity → more links and costs)
- Capacity has no influence

No. LINKS Analysis of Variance						
Analysis of Variance						
Source		DF	Adj SS	Adj MS	F-Value	P-Value
Size (F1)		1	1114925	1114925	3809.26	0.000
Density (F2)		1	2646478	2646478	9041.98	0.000
Capacity (F3)		1	655	655	2.24	0.135
Size (F1) *Density (F2)		1	16953082	16953082	57922.01	0.000
Size (F1) *Capacity (F3)		1	373	373	1.27	0.260
Density (F2)*Capacity (F3)		1	40927	40927	139.83	0.000
Size (F1) *Density (F2) *Capacity	(F3)	1	252004	252004	861.00	0.000
Error		392	11473	4 29	293	
Total		399	15453367	5		

F1. NODES COMPLEXITY
F2. LINKS COMPLEXITY
F3. NETWORK CAPACITY

SOME CURVES (Low No. Nodes)

F1. NODES COMPLEXITY
F2. LINKS COMPLEXITY
F3. NETWORK CAPACITY

SOME CURVES (High No. Nodes)

F1. NODES COMPLEXITY

F2. LINKS COMPLEXITY

F3. NETWORK CAPACITY

SOME PRELIMINARY RESULTS

Larger robustness is found under targeted attack than under random failure!!

- ☐ For high "link complexity" networks ⟨*-2-*⟩, R^{targ} and R^{rand} behave as expected
- ☐ ...and the most complex cases ⟨2-2-2⟩, with clear effects of targeted attacks
- ☐ For low "link complexity" AND "high node complexity", unexpected behaviour is observed

5. SUMMARY AND CONCLUSIONS

- 1. Introduction
- 2. Approach to measure robustness
- 3. Modelling the network collapse
- 4. Experimental framework and results
- 5. Summary and conclusions

5. SUMMARY AND CONCLUSIONS

- We propose a measure of robustness as resilience under successive collapse of links, measured as the area of service level
- Some experiments have been carried out, considering random and targeted attacks
- First results show unexpected behaviour when the network is complex in nodes and links
- Over-capacity of the chain seems not having much influence in network characteristics and robustness

5. SUMMARY AND CONCLUSIONS

FURTHER QUESTIONS

- Introduce the other two resilience factors (density and node criticality) described by Craighead et al (2007)
- Sorting links according to their impact when collapsing, instead of flow
- So far the impact on service level has been assessed but cost impact may also be important
- Ways of increasing resilience can be devised
- In this study only the arcs can collapse but, in practice, supply chain nodes can also fail

