

Optimizing fresh food for processing: application for a large Chilean apple supply chain

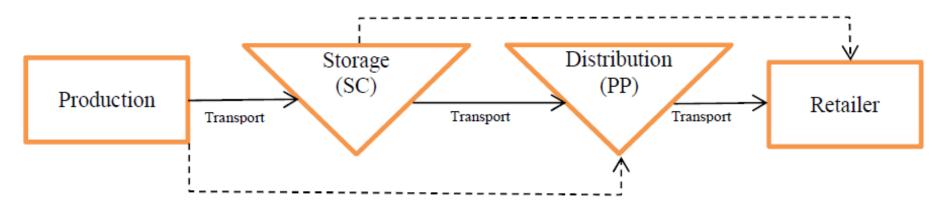


Jordi Mateo, Lluis M. Pla, F. Solsona Universitat de Lleida

Wadimir Soto, Marcela Gonzalez
Universidad de Talca

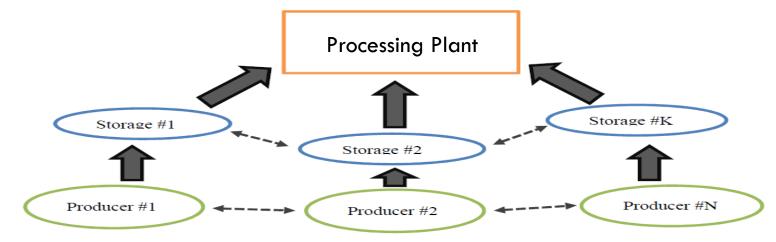
October-2016

## Index


- 1. Introduction
- 2. Problem description
- 3. Formulation of the model
- 4. Application of the model
- 5. Results and discussion
- 6. Conclusions and future work

### Introduction




## Problem description

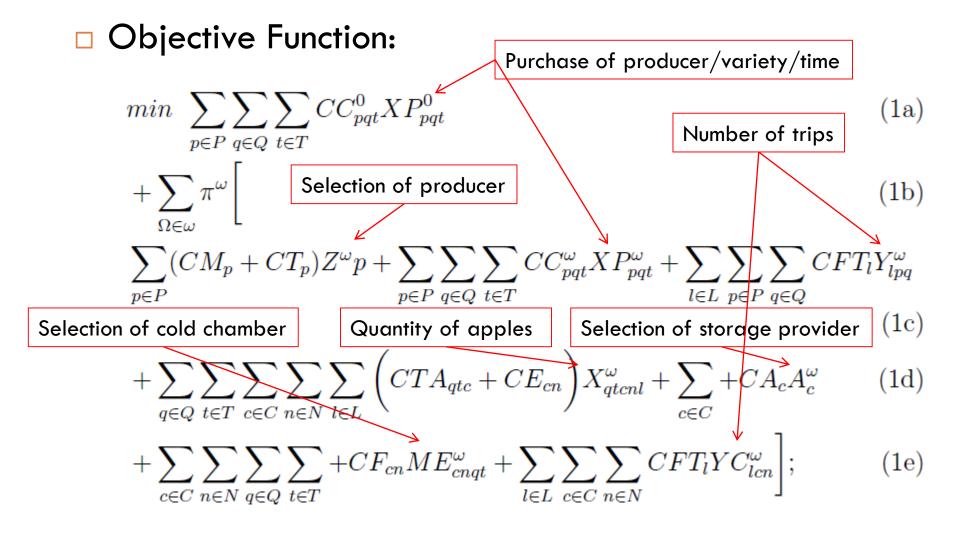
- □ The fruit supply chain:
  - Seasonable production (harvesting vs non-harvesting season)
  - Quality variations
  - Special storage conditions
  - Short delivery time to preserve freshness
  - Packing demands
  - Interaction of different agents



## Problem description: Case study

Real Case from a Driying processing plant




- Objectives:
  - Contract all the product to be processed for a year
  - Stock apples in cold chambers until processed
  - Deliver steadily apples to the plant
  - Buy additional raw material if needed

#### □ Sets:

- P Set of available producers.
- $\Omega$  Set of different uncertain scenarios.
- Q Set of different apples varieties.
- T Set of different type of apples.
- N Set of cold storage's inside a Warehouse.
- C Set of warehouses.
- L Set of trucks.

#### Parameters:

| $\begin{array}{ll} CC_{pqt}^0 & \text{Cost for purchasing in the first stage.} \\ CC_{pqt}^\omega & \text{Cost for purchasing in the second stage under scenario } \omega. \\ CM_p & \text{Cost to maintain a producer } p. \\ CT_p & \text{Cost to transport from a producer } p. \\ CFT_l & \text{Cost for using truck } l. \\ CTA_{qtc} & \text{Cost for transportation.} \\ CE_{cn} & \text{Cost for storing using a cold tech inside warehouse } c \text{ using the cold storage } n. \\ CF_{cn} & \text{Cost for using a specific chamber inside warehouse } c \text{ using the cold storage } n. \\ D_{qt}^\omega & \text{Amount of demand for variety } q \text{ and type } t \text{ under scenario } \omega. \\ O_{pqt} & \text{Amount of raw material from variety } q \text{ and type } t \text{ produced by producer } p. \\ \end{array}$ |                   |                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------------------------|
| $CC_{pqt}^{\omega}$ Cost for purchasing in the second stage under scenario $\omega$ . $CM_p$ Cost to maintain a producer $p$ . $CT_p$ Cost to transport from a producer $p$ . $CFT_l$ Cost for using truck $l$ . $CTA_{qtc}$ Cost for transportation. $CE_{cn}$ Cost for storing using a cold tech inside warehouse $c$ using the cold storage $n$ . $CF_{cn}$ Cost for using a specific chamber inside warehouse $c$ using the cold storage $n$ . $D_{qt}^{\omega}$ Amount of demand for variety $q$ and type $t$ under scenario $\omega$ .                                                                                                                                                                                                                                                                                                          | $CC_{pqt}^0$      | Cost for purchasing in the first stage.                                              |
| $CM_p$ Cost to maintain a producer $p$ . $CT_p$ Cost to transport from a producer $p$ . $CFT_l$ Cost for using truck $l$ . $CTA_{qtc}$ Cost for transportation. $CE_{cn}$ Cost for storing using a cold tech inside warehouse $c$ using the cold storage $n$ . $CF_{cn}$ Cost for using a specific chamber inside warehouse $c$ using the cold storage $n$ . $D_{qt}^{\omega}$ Amount of demand for variety $q$ and type $t$ under scenario $\omega$ .                                                                                                                                                                                                                                                                                                                                                                                                |                   | Cost for purchasing in the second stage under scenario $\omega$ .                    |
| $CFT_l$ Cost for using truck $l$ . $CTA_{qtc}$ Cost for transportation. $CE_{cn}$ Cost for storing using a cold tech inside warehouse $c$ using the cold storage $n$ . $CF_{cn}$ Cost for using a specific chamber inside warehouse $c$ using the cold storage $n$ . $D_{qt}^{\omega}$ Amount of demand for variety $q$ and type $t$ under scenario $\omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | Cost to maintain a producer $p$ .                                                    |
| $CTA_{qtc}$ Cost for transportation.<br>$CE_{cn}$ Cost for storing using a cold tech inside warehouse $c$ using the cold storage $n$ .<br>$CF_{cn}$ Cost for using a specific chamber inside warehouse $c$ using the cold storage $n$ .<br>$D_{qt}^{\omega}$ Amount of demand for variety $q$ and type $t$ under scenario $\omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $CT_p$            | Cost to transport from a producer $p$ .                                              |
| $CE_{cn}$ Cost for storing using a cold tech inside warehouse $c$ using the cold storage $n$ . $CF_{cn}$ Cost for using a specific chamber inside warehouse $c$ using the cold storage $n$ . $D_{qt}^{\omega}$ Amount of demand for variety $q$ and type $t$ under scenario $\omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $CFT_l$           | Cost for using truck $l$ .                                                           |
| $CF_{cn}$ Cost for using a specific chamber inside warehouse $c$ using the cold storage $n$ .<br>$D_{qt}^{\omega}$ Amount of demand for variety $q$ and type $t$ under scenario $\omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $CTA_{qtc}$       | Cost for transportation.                                                             |
| $D_{qt}^{\omega}$ Amount of demand for variety q and type t under scenario $\omega$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $CE_{cn}$         | Cost for storing using a cold tech inside warehouse $c$ using the cold storage $n$ . |
| qv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $CF_{cn}$         | Cost for using a specific chamber inside warehouse $c$ using the cold storage $n$ .  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $D_{qt}^{\omega}$ | Amount of demand for variety $q$ and type $t$ under scenario $\omega$ .              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | -                 | Amount of raw material from variety $q$ and type $t$ produced by producer $p$ .      |



#### Constraints:

$$s.t.: MZ_p^{\omega} \ge \sum_{q \in Q} \sum_{t \in T} (XP_{pqt}^0 + XP_{pqt}^{\omega}), \qquad \forall \omega \in \Omega, \ \forall p \in P$$
 (1f)

$$XP_{pqt}^{0}|T| \ge \sum_{t' \in T} XP_{pqt'}^{0}, \quad \forall p \in P, \ q \in Q, \ t \in T$$
 (1g)

$$XP_{pqt}^{\omega}|T| \ge \sum_{t' \in T} XP_{pqt'}^{\omega}, \quad \forall p \in P, \ q \in Q, \ t \in T$$
 (1h)

$$XP_{pqt}^0 + XP_{pqt}^\omega \le 1, \qquad \forall p \in P, \ q \in Q, \ t \in T, \ \omega \in \Omega$$
 (1i)

#### Constraints:

$$\sum_{p \in P} \sum_{t \in T} \sum_{l \in L} W_{pqtl}^{\omega} \ge \sum_{t \in T} D_{qt}^{\omega} \qquad \forall q \in Q, \ \omega \in \Omega$$
 (1j)

$$\sum_{l \in L} W_{pqtl}^{\omega} \le (XP_{pqt}^{\omega} + XP_{pqt}^{0})O_{pqt} \qquad \forall q \in Q, \ p \in P, \ t \in T \ \forall \omega \in \Omega$$

(1k)

$$\sum_{t \in T} W_{pqtl}^{\omega} \le QMax_l Y_{lpq}^{\omega} \qquad \forall q \in Q, \ p \in P, \ l \in L$$
 (11)

$$\sum_{l \in L} X_{qtcnl}^{\omega} \leq W C_{cn} M E_{cnqt}^{\omega} \qquad \forall \omega \in \Omega, \ \forall c \in C, \ n \in N \ t \in T, \ q \in Q$$

(1m)

$$\sum_{n \in N} \sum_{t \in T} \sum_{q \in Q} M E_{cntq} <= |C| A_c^{\omega} \qquad \forall \omega \in \Omega, \ \forall c \in C$$
 (1n)

$$\sum_{q \in Q} \sum_{t \in T} X_{qtcnl}^{\omega} \leq QMax_{l} Y C_{lcn}^{\omega} \qquad \forall \omega \in \Omega, \ \forall c \in C, \ n \in N \ l \in L$$

(1o)

#### Constraints:

$$\sum_{c \in C} \sum_{n \in N} X_{qtcnl}^{\omega} \ge \sum_{p \in P} W_{pqtl}^{\omega} \qquad \forall \omega \in \Omega, \ \forall q \in Q, \ t \in T, \ l \in L$$

$$\sum_{t \in T} \sum_{q \in Q} M E_{cnqt}^{\omega} \le 1, \qquad \forall \omega \in \Omega, \ \forall c \in C, \ n \in N$$

$$M E_{cnqt}^{\omega} = 0, \qquad \forall \omega \in \Omega, \ \forall q \in Q, \ c \in C, \ n \in N, \ t \in T : t < T E_{cn}$$

$$(1r)$$

#### Objective Function:

$$min \sum_{p \in P} \sum_{q \in Q} \sum_{t \in T} CC_{pqt}^{0} X P_{pqt}^{0}$$

$$\tag{1a}$$

$$+\sum_{\Omega\in\omega}\pi^{\omega}\bigg[ \tag{1b}$$

$$\sum_{p \in P} (CM_p + CT_p) Z^{\omega} p + \sum_{p \in P} \sum_{q \in Q} \sum_{t \in T} CC^{\omega}_{pqt} X P^{\omega}_{pqt} + \sum_{l \in L} \sum_{p \in P} \sum_{q \in Q} CFT_l Y^{\omega}_{lpq}$$

-----(1c)

(1e)

$$+\sum_{q\in Q}\sum_{t\in T}\sum_{c\in C}\sum_{n\in N}\sum_{l\in L}\left(CTA_{qtc}+CE_{cn}\right)X_{qtcnl}^{\omega}+\sum_{c\in C}+CA_{c}A_{c}^{\omega}$$
(1d)

$$+\sum_{c\in C}\sum_{n\in N}\sum_{q\in Q}\sum_{t\in T}+CF_{cn}ME^{\omega}_{cnqt}+\sum_{l\in L}\sum_{c\in C}\sum_{n\in N}CFT_{l}YC^{\omega}_{lcn}\Big];$$

#### □ Objective Function (2):

$$min \sum_{p \in P} \sum_{q \in Q} \sum_{t \in T} CC_{pqt}^{0} X P_{pqt}^{0} + \sum_{\Omega \in \omega} \pi^{\omega} \left[ \sum_{p \in P} (CM_p + CT_p) Z^{\omega} p \right]$$
 (2a)

$$+\sum_{p\in P}\sum_{q\in Q}\sum_{t\in T}CC^{\omega}_{pqt}XP^{\omega}_{pqt} + \sum_{l\in L}\sum_{p\in P}\sum_{q\in Q}CFT_{l}Y^{\omega}_{lpq}$$

$$(2b)$$

$$+\sum_{q\in Q}\sum_{t\in T}\sum_{c\in C}\sum_{n\in N}\sum_{l\in L}\left(CTA_{qtc}+CE_{cn}\right)X_{qtcnl}+\sum_{c\in C}+CA_{c}A_{c}$$
 (2c)

$$+\sum_{c\in C}\sum_{n\in N}\sum_{q\in Q}\sum_{t\in T}+CF_{cn}ME_{cnqt}+\sum_{l\in L}\sum_{c\in C}\sum_{n\in N}CFT_{l}YC_{lcn};$$
(2d)

#### □ Objective Function (3):

$$min \sum_{p \in P} \sum_{q \in Q} \sum_{t \in T} CC_{pqt}^{0} X P_{pqt}^{0} + \sum_{c \in C} \sum_{n \in N} \sum_{q \in Q} \sum_{t \in T} CF_{cn} M E_{cnqt}^{0}$$
 (3a)

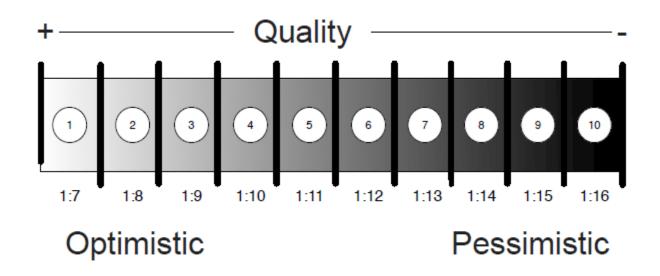
$$+\sum_{q\in Q}\sum_{t\in T}\sum_{c\in C}\sum_{n\in N}\sum_{l\in L}\left(CTA_{qtc}+CE_{cn}\right)X_{qtcnl}^{0}+\sum_{\Omega\in\omega}\pi^{\omega}\left[$$
(3b)

$$\sum_{p \in P} (CM_p + CT_p) Z^{\omega} p + \sum_{p \in P} \sum_{q \in Q} \sum_{t \in T} CC^{\omega}_{pqt} X P^{\omega}_{pqt}$$
(3c)

$$+\sum_{l\in L}\sum_{p\in P}\sum_{q\in Q}CFT_{l}Y_{lpq}^{\omega} \tag{3d}$$

$$+\sum_{q\in Q}\sum_{t\in T}\sum_{c\in C}\sum_{n\in N}\sum_{l\in L}\left(CTA_{qtc} + CE_{cn}\right)X_{qtcnl}^{\omega} + \sum_{c\in C}$$
(3e)

$$+\sum_{c\in C}\sum_{n\in N}\sum_{q\in Q}\sum_{t\in T}+CF_{cn}ME^{\omega}_{cnqt}+\sum_{l\in L}\sum_{c\in C}\sum_{n\in N}CFT_{l}YC^{\omega}_{lcn}\Big];$$
(3f)


## Application of the model

#### □ Dimensions:

| Instance         | P   | Q | T | N  | $\mathbf{C}$ | L | Ω  |
|------------------|-----|---|---|----|--------------|---|----|
| Case 1<br>Case 2 | 50  | 6 | 3 | 10 | 11           | 3 | 13 |
| Case 2           | 272 | 6 | 3 | 10 | 11           | 3 | 13 |

## Application of the model

#### □ Scenarios:



## Application of the model

#### □ Scenarios:

| Ω  | $\pi^{\omega}$ | Quality | $CC^0$   | %   | $C^{\omega}$ |
|----|----------------|---------|----------|-----|--------------|
| 1  | 1%             | 1:6     | 12500 \$ | 16% | 14500 \$     |
| 2  | 1%             | 1:7     | 12500 \$ | 19% | 14875 \$     |
| 3  | 1%             | 1:8     | 12500 \$ | 22% | 15250 \$     |
| 4  | 5%             | 1:9     | 12500 \$ | 25% | 15625 \$     |
| 5  | 13%            | 1:10    | 12500 \$ | 27% | 15875 \$     |
| 6  | 23%            | 1:11    | 12500 \$ | 30% | 16250 \$     |
| 7  | 23%            | 1:12    | 12500 \$ | 33% | 16625 \$     |
| 8  | 15%            | 1:13    | 12500 \$ | 35% | 16875 \$     |
| 9  | 10%            | 1:14    | 12500 \$ | 38% | 17250 \$     |
| 10 | 5%             | 1:15    | 12500 \$ | 40% | 17500 \$     |
| 11 | 1%             | 1:16    | 12500 \$ | 35% | 17875 \$     |
| 12 | 1%             | 1:17    | 12500 \$ | 38% | 18125 \$     |
| 13 | 1%             | 1:18    | 12500 \$ | 40% | 18500 \$     |

### Results and discusion

- Implemented with ILOG OPL and solved with Cplex v12.6
- □ Pentium 2.10GHz. / 4Gb RAM

| SS         | 48.136.250,53 \$ |
|------------|------------------|
| Time (min) | 10               |
| GAP        | 0.21%            |

## Results and discusion

| By  | scenario | , |
|-----|----------|---|
| _ / |          | • |

| EVIP | -80.856,45\$ |
|------|--------------|
| %    | 0.16%        |

| Ω  | Quality |                  |
|----|---------|------------------|
| 1  | 1:6     | 23.551.400,00 \$ |
| 2  | 1:7     | 28.523.536,00 \$ |
| 3  | 1:8     | 31.519.698,00 \$ |
| 4  | 1:9     | 36.109.420,00 \$ |
| 5  | 1:10    | 40.130.498,00 \$ |
| 6  | 1:11    | 44.375.572,00 \$ |
| 7  | 1:12    | 48.772.750,00 \$ |
| 8  | 1:13    | 52.686.322,00 \$ |
| 9  | 1:14    | 57.039.850,00 \$ |
| 10 | 1:15    | 60.969.608,00 \$ |
| 11 | 1:16    | 65.908.666,00 \$ |
| 12 | 1:17    | 70.501.160,00 \$ |
| 13 | 1:18    | 75.338.598,00 \$ |

## Results and discusion

□ VSS:

$$VSS = SS - EQS = 48.136.250, 53 - 48.163.901, 31, 6 = -27.650, 78$$
 (6)

#### Future work & conclusions

- The deterministic model is enough under present formulation
- A revision of the stochastic model could be advisable (scenario generation).
- □ There is few advantage in using recourse action
- □ First stage decisions are the most important

# Thanks for your attention