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• Problems with parallel production machines
are common in industry and have many other
potential applications

• We have a set of n jobs that have to be
processed in one out of the m parallel
machines

• Each machine processes each job with a
different speed

• pij is the processing time of job j at machine i

1. Introduction and objectives



http://soa.iti.es 

• Jobs do not overlap on the machines

• Jobs cannot be interrupted

• Machines need cleaning/adjusting or 
reconfigurations after processing each job 
and before processing the next job in the 
sequence

• These are the setup times and are sequence 
dependent: sijk

1. Introduction and objectives
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• Most usual objective is to minimize the 
maximum completion time or makespan
(Cmax)

• Problem denoted as R/Sijk/Cmax

• The version with identical parallel machines, 
and no setups (P//Cmax) is already NP-Hard 
even in the most simple case of two parallel 
machines (Garey and Johnson, 1979)

1. Introduction and objectives
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• Objectives:

• To study existing formulations

• To propose new formulations with the hope
of solving to optimality moderately sized
problems of practical use

1. Introduction and objectives
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2. State-of-the-art MIP

• We can start with simple models (Vallada and
Ruiz, 2012)
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2. State-of-the-art MIP

• Adaptations of models for related problems
(Balakrishnan et al., 1999)
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2. State-of-the-art MIP

• Many authors employ TSP reformultations.
Note that each machine can be modelled as a
ATSP

706560555045403530252015105

Machine 
1

Machine 
2 1

2

3

4

Time



http://soa.iti.es 

1

2

3

4

Depot
(dummy job)

2. State-of-the-art MIP

• Many authors employ TSP reformultations.
Note that each machine can be modelled as a
ATSP



http://soa.iti.es 

2. State-of-the-art MIP

• Many authors employ TSP reformultations.
Note that each machine can be modelled as a
ATSP
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2. State-of-the-art MIP

• Best known models due to Avalos et al. (2015)
and part used by Tran et al. (2012,2016)

SECSE

CUTSSE
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3. New models

• We propose a reformulation with different
SEC and inequalities
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3. New models

• Subtour elimination constraints:

• MTZ. Adapted from the Miller-Tucker-
Zemlin (1960) constraints:

• Where is the position of job in the
sequence

• If job follows job , then
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3. New models

• Subtour elimination constraints:

• DL. Adapted from Desrochers and Laporte
(1991):

• If job follows job , then
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3. New models

• Some valid inequalities. KB adapted from
Kara and Bektas (2006):
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3. New models

• Some valid inequalities. AM:

• Now only two cases are possible:

• If , then

• Otherwise,
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• We test the following variants of our proposed
model:

• Two types of subtour elimination constraints
(MTZ and DL)

• Valid inequalities KB (MTZ-KB, DL-KB)

• Valid inequalities AM (MTZ-AM, DL-AM)

3. Computational experiments
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• The competing models are:

• ST. Standard model of Vallada and Ruiz (2012)

• BL. Improved model of Balakrishnan et al.,
(1999)

• AV. The ATSP model of Avalos et al., (2015)

3. Computational experiments
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• Instances:

• Small (𝑛𝑛 ∈ 6,8,10,12 ,𝑚𝑚 ∈ {2,3,4,5})

• Medium (𝑛𝑛 ∈ 14,16, … , 34 ,𝑚𝑚 ∈ {3,4,5,6})

• Large (𝑛𝑛 ∈ 40,50,60,70,80 ,𝑚𝑚 ∈ {3,4,5,6,7,8})

• For each combination of 𝑛𝑛 and 𝑚𝑚
• 𝑠𝑠𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑈𝑈 1,9 ,𝑈𝑈 1,49 ,𝑈𝑈 1,99 ,𝑈𝑈 1,124 (triangle inequality)

• 𝑝𝑝𝑖𝑖𝑖𝑖 ∈ 𝑈𝑈(1,99)

• 10 random replicates: 640 small, 1760 medium, 1200 large

3. Computational experiments
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• 1 hour maximum CPU time stopping criterion

• CPLEX 12.6.3

• Runs on a cluster of 30 blade servers each one
with two Intel XEON E5420 processors running at
2.5 GHz and with 16 GB of RAM memory

• We measure the number of optimum solutions
obtained, the relative percentage deviation from
a lower bound and the CPU times employed

3. Computational experiments
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Small Opt. Sol. CPU Time RPD No Sol.

ST 91 247.68 0.03 0.3
BL 100 1.05 0 0
AV 100 0.27 0 0
All

proposed
models

100 ≈ 0 0 0

3. Computational experiments
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Medium Opt. Sol. CPU Time RPD No Sol.

ST_24 20.4 2767 10.3 7.4

BL_24 81.1 813.6 0.16 0

AV_24 100 49.9 0 0

AV_32 63.8 571 0.0004 0.52
All

proposed
models

100 ≈ 0 0 0

3. Computational experiments
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Large Opt. Sol. CPU Time RPD No Sol.

AV 51.9 2148.2 3.09 2.7

MTZ 53.3 2124.4 0.7 1.75

DL 53.3 2124.1 0.6 2.08

MTZ-KB 55.8 2041.8 0.54 1.75

MTZ-AM 54.1 2115.2 1.08 0.75

DL-KB 55.1 2021.2 0.48 2.25

DL-AM 53.8 2090.9 0.61 0.17

3. Computational experiments
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n=80,m=8 Best. Sol. RPD No Sol.

AV 7.5 38.21 5

MTZ 27.5 6.51 0

DL 25 4.55 0

MTZ-KB 35 2.7 0

MTZ-AM 20 3.26 0

DL-KB 37.5 2.63 0

DL-AM 27.5 4.7 2.5

3. Computational experiments
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• We have presented new formulations for the
unrelated parallel machines scheduling problem
with sequence dependent setup times and
makespan criterion

• Two different subtour elimination constraints
and two sets of valid cuts have been used

• We have compared with existing models for the
problem

4. Conclusions
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• Small and medium instances are easily solved.
Large instances of up to 80 jobs can also be
solved to very small gaps in many cases

• Real sized instances can now be optimally
solved in acceptable computational times

• Lots of work to do: heuristics, metaheuristics,
other objectives, etc.

4. Conclusions
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2. A more complex problem as a 
cutting and packing reformulation

Contents
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1. Introduction and objectives

Job 1 Job 2 Job 3 Job 4 Job 5 Job 6 Job 7 Job 8
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• “Simple” assignment problem

• Easily formulated as a MIP:

1. Introduction and objectives
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• We extend the problem with the
consideration of an additional resource

• Usually models operators needed at the
machines

• Rmax maximum available units of a renewable
resource. No more units might be used at
any time

• rij units of resource needed during pij units of
time for processing job j at machine i

1. Introduction and objectives
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• This new problem is significantly more
complex. An example:

1. Introduction and objectives
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• Objectives:

• To propose an efficient formulation for the
problem

• To propose effective matheuristics to solve
hopefully medium instances of some
practical relevance

1. Introduction and objectives
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2. Bin packing reformulation

• The UPMR problem scantly studied in the
literature

• Existing MILP as a special case of the model
presented by Edis and Oguz (2012) not very
efficient

• Xijk binary variable that takes value 1 if job
j is assigned to machine i and completed
at time k
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2. Bin packing reformulation

• We take a look at the extensive literature on
bin-packing problems

• Place a set of 2D pieces into a rectangular
case

• If one of the dimensions of the case is open,
the problem is referred to as strip-packing
problem

• The objective is to minimize the “used” open
dimension in the packing
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2. Bin packing reformulation
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2. Bin packing reformulation

• Modeling the UPMR as a special strip packing
problem:

• One dimension of the case (height) is Rmax

• The other dimension (width) is open and
to be minimized (Cmax)

• There are n·m pieces, one per job and
machine with dimensions rij x pij

• Note that each job has m pieces, one per
machine, with different dimensions
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2. Bin packing reformulation

• Only one piece of each job must be placed
in the strip (each job is processed only
once)

• No piece might overlap in height
(resources)

• The pieces assigned to different machines
might overlap in width (time)

• Pieces assigned to the same machine
cannot overlap in width (time)
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2. Bin packing reformulation

• A set of binary assignment variables as in
the regular parallel machines problem and
a set of continuous top-right corner
coordinates variables for each piece

• The model is complex but with far less
binary variables than the one of Edis and
Oguz (2012)
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2. Bin packing reformulation
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3. Matheuristics

• We propose three simple matheuristic
strategies based on both models, the bin
packing and the one of Edis and Oguz (2012)

1. Machine-assignment fixing (MAF):

• We first solve the problem without
resources (R//Cmax)

• Solve the UPMR models but using the
machine assignment obtained before
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3. Matheuristics

2. Job-machine reduction (JMR):

• The models are reduced in size by
considering, for each job, only the most
promising machines

3. Greedy-based fixing (GBF):

• At each iteration, a group g of jobs is
scheduled using the UPMR models

• Jobs are scheduled considering the
previous unscheduled jobs
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• We test the following methods:

• Edis and Oguz (2012) model (UPMR-S)

• Proposed bin packing reformulation (UPMR-P)

• All three proposed matheuristics, each using
the two models (MAF-S, MAF-P, JMR-S, JMR-P,
GBF-S and GBF-P)

• CPLEX 12.6.3

• Runs on a cluster of 30 blade servers each one
with two Intel XEON E5420 processors running at
2.5 GHz and with 16 GB of RAM memory

3. Computational experiments



http://soa.iti.es 

• 1 hour maximum CPU time stopping criterion

• Set of 900 instances with several characteristics

• Number of jobs 8, 12, 16 (small) and 20, 25 and
30 (medium)

• Number of machines 2, 4 and 6

• Random resources and by intervals

• 148 CPU days of experimentation

• Relative percentage deviation from a lower bound

• Lower bound = max{makespan without
resources, LB(UPMR-S),LB(UPMR-P)}

3. Computational experiments
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Opt. Sol. Prov. Opt. Sol. No Sol.

UPMR-S 302 377 484 114
UPMR-P 194 269 706 0
MAF-S 373 520 7
MAF-P 421 479 0
JMR-S 318 493 89
JMR-P 258 642 0
GBF-S 194 706 0
GBF-P 240 660 0

3. Computational experiments
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RPD1
small

RPD1
medium

RPD2
small

RPD2
medium

UPMR-S 9.92 112.14 29.53 168.11

UPMR-P 3.21 21.38 3.55 22.17

MAF-S 14.16 36.56 14.47 65.54

MAF-P 11.10 10.47 10.95 10.24

JMR-S 7.86 74.55 19.78 138.36

JMR-P 3.35 16.17 3.52 15.84

GBF-S 4.32 11.05 4.49 11.14

GBF-P 3.63 9.06 3.76 8.82

3. Computational experiments
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• We have studied an interesting generalization
of the unrelated parallel machines problem that
makes it much more realistic

• We have presented an original modelization
based on a very singular strip packing problem

• We have presented three simple matheuristic
approaches

4. Conclusions
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• Matheuristics dominate in almost all cases both
mathematical models

• Medium sized instances can be solved in
reasonable CPU times with acceptable
deviations from lower bounds

• Lots of work to do: heuristics, metaheuristics,
other objectives, setup times, etc.

4. Conclusions
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